Paper title: |
The L(2,1)-Labeling of Some Middle Graphs |
Published in: | Issue 3, (Vol. 4) / 2010 |
Publishing date: | 2010-10-26 |
Pages: | 104-107 |
Author(s): | VAIDYA Samir K., BANTVA Devsi D. |
Abstract. | An (2,1) L -labeling of a graph G is a function f from the vertex set V (G) to the set of all nonnegative integers such that |f(x)-f(y)| >= 2 if d(x,y) = 1 and |f(x)-f(y)| >= 1 if if d(x,y) = 2. The L(2,1) -labeling number λ(G) of G is the smallest number k such that G has an L(2,1)-labeling with max{f(v): v∈ V(G). In this paper we completely determine λ-number for middle graph of path Pn, cycle Cn , star K1,n, friendship graph F nand wheel Wn. |
Keywords: | L (2,1) -labeling, λ Number, Middle Graphs. |
References: | 1. G. J. Chang and D. Kuo, The L(2,1) -labeling problem on graphs, SIAM J. Discrete Math. 9(2)(1996), pp.309-316. 2. J. Georges and D. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer. 109(1995), pp.141- 159. 3. J. Georges, D. Mauro and M. Whittlesey, Relating path covering to vertex labelings with a condition at distance two, Discrete Math. 135(1994), pp.103-111. 4. J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Discrete Math. 5(1992), pp.586-595. 5. W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68(1980), pp.1497-1514. 6. D. Sakai, Labeling chordal graphs: Distance two condition, SIAM J. Discrete Math. 7(1)(1994), pp.133-140. 7. S. K. Vaidya, P. L. Vihol, N. A. Dani, D. D. Bantva, L(2,1) - labeling in the context of some graph operations, Journal of Mathematics Research, 2(3)(2010), pp. 109-119. 8. D. B. West, Introduction to Graph Theory, Prentice-Hall of India, 2001. 9. R. K. Yeh, Labeling graphs with a condition at distance two, Ph. D. Thesis, Dept. of Math., University of South Carolina, Columbia, SC, 1990. |
Back to the journal content |