Paper title:

The Study of Relaxations on a Special Fuzzy Stochastic LP Problem

Published in: Issue 2, (Vol. 4) / 2010
Publishing date: 2010-04-30
Pages: 45-49
Author(s): SHARIFI Mahdi, FAZLOLLAH Soleymani
Abstract. In this paper the influence of relaxations on a special fuzzy linear programming problem when the parameters are fuzzy, with stochastic dominance constraints of the first order is studied. In fact, after the defuzzification and employing the relaxation on it, we formulate and analyze the mixed 0-1 linear programming.
Keywords: Stochastic Programming; Linear Programming Relaxation; Fuzzy Parameters.
References:

1. Charnes, W.W. Cooper, Deterministic equivalents for optimizing and satisfying under uncertainty, Operational Research, 11 (1963), 18 - 39.

2. E. Czogala, K. Hirota, Probabilistic Sets: Fuzzy and Stochastic Approach to Control and Recognition Processes, Verlag, (1986).

3. M. Darehmiraki, H.M. Nehi, Molccular solution to the 0-1 knapsack problem based on DNA algorithm, Appl. Math. and Comput, (2007), 1033-1037.

4. Dentcheva, A. Ruszczynski, Optimization with stochastic dominance constraints, SIAM J. Optim, 14 (2003) 548-566.

5. Dentcheva, A. Ruszczynski, Convexification of stochastic ordering, Comptes Rendus de 1'Academic Bulgar des Sciences, 57 (4) (2004) 7-14.

6. D. Dentcheva, A. Ruszczynski, Semi-infinite probabilistic optimization: first order stochastic dominance constraints, Optimization, 53 (2004) 583- 601.

7. M. Gendreau, G. Laporte, R. Seguin, Stochastic vehicle routing, European Journal of Operational Research, 88 (1996) 3-12.

8. J. Hadar, W. Russell, Rules for ordering uncertain prospects, Amer. Econom. Rev, 59 (1969) 25-34.

9. G. Hanoch, H. Levy, The efficiency analysis of choices involving risk, Rev. Econom. Stud, 36 (1969) 35-346.

10. G.J. Klir, T.A. Floger, Fuzzy sets uncertainty and information, Publication Hall of India, ISBN: 9788120306950 (2008).

11. M.K. Luhandjula, Fuzzy stochastic linear programming: Survey and future research directions, European Journal of Operational Research, 174 (2006) 1353-1367.

12. Muller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley, Chichester, (2002).

13. T. Sauer, Numerical Analysis, Addison Wesley Publication, USA, (2005).

14. H.A. Simon, Administration Behaviour, Free press, New York, (1945).

15. L.A. Zadeh, Probability measure of fuzzy event, Journal of Mathematical Analysis and Applications, 23 (1968) 421-427.

16. H.J. Zimmerman, Fuzzy Sets, Decision Making and Expert Systems, Springer Press, ISBN: 0898381495, (1987)

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2022