Paper title:

A Game Theory Model: HIV and Malaria Co-Infection

DOI: https://doi.org/10.4316/JACSM.202102007
Published in: Issue 2, (Vol. 15) / 2021
Publishing date: 2021-11-14
Pages: 49-52
Author(s): ROY Ajanta
Abstract. Two of the world’s most widespread fatal diseases, malaria and HIV, distribution significantly overlaps in South Saharan Africa, South East Asia and South America. This paper develops a game theory model for HIV and Malaria co- infection transmission and control by considering malaria treatment and insect repellent treated mosquito nets. The usage of insect repellent treated mosquito net considerably decrease the risk of HIV and malaria co-infection. Even under some conditions insect repellent treated mosquito net may eradicate the disease. This paper also discusses the effect of malaria treatment rate u in reducing the spread of infection.
Keywords: Game Theory, HIV And Malaria Co-infection
References:

1. Agusto, F. B., S. Y. D. Valle, K. W. Blayneh, C. N. Ngonghala, M. J. Goncalves, N. Li, R. Zhao, and H. Gong, The impact of bed-net use on malaria prevalence, J. Theor. Biol., 320 (2013), 58–65

2. Alemu, A., Y. Shiferaw, Z. Addis, B. Mathewos, W. Birhan, Effect of malaria on HIV/AIDS transmission and progression, Parasit Vectors, 6 (2013), 1–8.

3. Bauch, C. T, and D. J. Earn, Vaccination and the theory of games. Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 13391–13394.

4. Cuadros, D. F., A. J. Branscum, and P. H. Crowley, HIV-malaria co-infection: effects of malaria on the prevalence of HIV in East sub-Saharan Africa, Int. J. Epidemiol., 40 (2011a), 931–939.

5. Cuadros, D. F., P. H. Crowley, B. Augustine, S. L. Stewart, G. García-Ramos, Effect of variable transmission rate on the dynamics of HIV in sub-Saharan Africa, BMC Infect. Dis., 11(216), (2011b), 1–133.

6. Fenichel, E. P., R. D. Horan, G. J. Hickling, Bioeconomic management of invasive vector- borne diseases, Biological Invasions, 12 (2010), 2877–2893.

7. Foster, W. A., Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol, 640 (1995), 443–474.

8. Jemal, M. A., and N. Eric, Optimal insecticide-treated bed-net coverage and malaria treatment in a malaria-HIV co-infection model, Journal of Biological Dynamics, 11(1) (2017), 160-191.

9. Kamal, B., M. David, R. Svetlana, M. T. Ana, and T. Sharquetta, A mathematical model of HIV and malaria co-infection in sub-Saharan Africa, AIDS Clin. Res., 3 (2012), 1–7.

10. Klowden, M. J., Blood sex and the mosquito, Bioscience, 45 (1995), 326–331.

11. Korenromp, E. L. , B. G. Williams, S. J. DeVlas, E. Gouws, C. F. Gilks, P. D. Ghys , B. L. Nahlen, Malaria attributable to the HIV-1 epidemic, sub-Saharan Africa, Emerg. Infect. Dis. 11 (2005), 1410–1419.

12. Kwenti, T. E., Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Research and reports in tropical medicine, 9 (2018), 123-136.

13. Mukandavire, Z., A. B. Gumel, W. Garira, and J. Tchuenche, Mathematical analysis of a model for HIV-malaria co-infection, Math. Biosci. Eng. 6 (2009), 333–362.

14. Ngonghala, C. N. , S. Y. Del Valle, R. Zhao, J. Mohammed-Awel, Quantifying the impact of decay in bed-net efficacy on malaria transmission, J. Theor. Biol., 364 (2014), 247–261.

15. Nyabadza, F., B. T. Bekele, M. A. Rúa, D. M. Malonza, N. Chiduku, M. K. Kgosimore, The implications of HIV treatment on the HIV-malaria coinfection dynamics: a modeling perspective, BioMed Res. Int., (2015).

16. Reeling, C. J., and R. D. Horan, Self-protection, strategic interactions, and the relative endogeneity of diseas e risks, American Journal of Agricultural Economic, 97 (2015), 452–468.

17. Roberds, A., Ferraro, E., Luckhart, S., and Stewart, V. A., HIV-1 Impact on Malaria Transmission: A Complex and Relevant Global Health Concern, Front. Cell. Infect. Microbiol., (2021), https://doi.org/10.3389/fcimb.2021.656938.

18. Sanyaolu, A. O., A. F. Fagbenro-Beyioku, W. A. Oyibo, O. S. Badaru, O. S. Onyeabor, and C. I. Nnaemeka, Malaria and HIV co-infection and their effect on hemoglobin levels from three healthcare institutions in Lagos, southwest Nigeria, Afr. Health Sci., 13 (2013), 295–300.

19. Tay, S. C. K., K. Badu, A. Mensah, S. Y. Gbedema, The prevalence of malaria among HIV seropositive individuals and the impact of the co- infection on their hemoglobin levels, Ann. Clin. Microbiol. Antimicrob., 14 (2015), 1–8.

20. Teboh-Ewungkem, M., J. Mohammed-Awel, F. N. Baliraine, S. Duke-Sylvester, The effect of intermittent preventive treatment on anti-malarial drug resistance spread in areas with population movement, Mal. J., 13 (2014), 1–21.

21. Wang, T., D. A. Hennessy, Strategic interactions among private and public efforts when preventing and stamping out a highly infectious animal disease, American Journal of Agricultural Economics, 97 (2015), 435–451.

22. White, M. T., L. Conteh, R. Cibulskis, and A. C. Ghani, Costs and cost-effectiveness of malaria control interventions–a systematic review, Mal. J., 10 (2011), 1–14.

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2021