Paper title: |
New Traveling Wave Solutions of Nonlinear Time Fractional Duffing Model via IBSFM |

DOI: |
https://doi.org/10.4316/JACSM.202002007 |

Published in: |
Issue 2, (Vol. 14) / 2020 |

Publishing date: |
2020-07-14 |

Pages: |
42-47 |

Author(s): |
DEMİRBİLEK Ulviye, ALA Volkan, MAMEDOV Kh. R. |

Abstract. |
In this study, we use the Improved Bernoulli Sub-Equation Function Method (IBSEFM) to establish exact solutions for generalized form of the reaction Duffing model in conformable time fractional sense. The compatible traveling wave transformations convert this model to the nonlinear ordinary differential equation (NODE). Applying the IBSEFM to the NODE, we construct new exact solutions. Returning to the original variables, we obtain traveling wave solutions of the considering conformable fractional nonlinear Duffing model. By the aid of mathematics software, we give the 2D and 3D graphs acquired from the values of the solutions |

Keywords: |
Conformable Fractional Derivative, Space-time Fractional Generalized Reaction Duffing Equation, IBSFEM. |

References: | 1. K.A.Lazopoulos(2006),Non-local continuum mechanics and fractional calculus, Mechanics Research Communications, Vol. 33, No.6, pp.753–757. 2. H.M. Youssef, E.A. Al-Lehaibi (2010), Variational principle of fractional order generalized thermos elasticity. Applied Mathematics Letters, Vol. 23, pp.1183–1187. 3. P.D. Paola, B. Zingales (2012), Exact mechanical models of fractional hereditary materials, Journal of Rheology, Vol. 55, pp. 983–1004. 4. H. Schiessel, R. Metzeler, A. Blumen, T.F. Nonnenmacher (1995), Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General, Vol. 28, pp. 6567–6584. 5. W. Liu, K. Chen (2013), The functional variable method for finding exact solutions of some nonlinear time fractional differential equations. Pramana, 2013, Vol. 81, pp.377–384. 6. B. Lu (2012), The first integral method for some time fractional differential equations, J. Math. Anal. Appl, Vol. 395, pp. 684–693. 7. Z. Bin (2012), Exp-function method for solving fractional partial differential equations. The Sci. World J. Vol.2013, pp.1-8. 8. A. Abdel-Salam, B.A. Emad, A.Y. Eltyabev (2013), Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method, Math. Probl. Eng., Vol. 2013, pp. 1–6. 9. K. R. Aslan, K. A. Khalid (2014), Two-Dimensional Nonstationary Contact of Elastic Cylindrical or Spherical Shells. Journal of Machinery Manufacture and Reliability, Vol. 43, No. 2, pp. 145–152. 10. K. Hosseini, R. Ansari (2017), New exact solution of nonlinear conformable time fractional Boussinesq equations using the modified Kudryashov method, Waves Random Complex Media, Vol.27, No.4, pp.628-636. 11. N. Shang N.,B. Zheng (2013) , Exact solutions for three fractional partial differential equations by the (/GG¢) method, IAENG International Journal of Applied Mathematics, Vol.43, No.3. 12. B. Zheng B., W. Chuanbao (2013), Exact solutions for fractional partial differential equations by a new fractional sub-equation method, Advances in Difference Equations,Vol. 2013, No. 199. 13. M. Odabası, E. Mısırlı (2018), On the solutions of the nonlinear fractional differential equations via the modified trial equation method, Mathematical Methods in the Applied Sciences, Vol. 41, pp. 904-911. 14. D. Kumar, J. Manafian, F. Hawlader, A. Ranjbaran (2018), New closed form soliton and other solutions of the Kundu- Eckhaus equation via the extended sinh-gordon equation expansion method,Optik, Vol. 160, pp. 159-167. 15. O. T. Kolebaje, O. O. Popoola (2014), Exact solution of fractional STO and Jimbo-Miwa equations with the generalized bernoulli equation method,The African Review of Physics, ,Vol. 160, pp.159-167. 16. R. Khalil R., M. Al Horani, A. Yousef, M. Sababheh (2014), A new definition of fractional derivative, J. Comput. Appl. Math., Pramana, Vol. 264, pp.65–70. 17. T. Abdeljawad (2015), On conformable fractional calculus. J.Comput. Appl. Math., Vol.279, pp.57–66. 18. A.Atangana, S.C.O. Noutchie (2014), Model of break-bone fever via beta derivates, J. BioMed. Biotechnol, Vol.2014, pp.1–10. 19. A. Atangana, D. Balenau., A. Alsaedi (2015), New properties of conformable derivate, Open. Math., Vol.2015, pp.1–10. 20. A. Atangana (2015), A novel model for the lassa hemorrhagic fever, deathly disease for pregnant women, Neural. Comput. Appl. Vol. 26, pp.1895–1903. 21. H. Rezazadeh, A. Korkmaz, T.A. Sulaiman, H. Bulut (2019), New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation, Modern Physics Letters B, Vol.13, No.6, pp.1950-1963. 22. H. Rezazadeh, A.M. Korkmaz, Eslami, J. Vahidi, R. Asghari (2018), Travelling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quant. Electron, Vol.50. No.150, pp.1-13. 23. A. Korkmaz (2017), Exact solutions of space-time fractional EW and modified EW equations, Chaos, Solitons Fractals, Vol.96, pp.132–138. 24. G. Yel, H. M. Baskonus (2019), Solitons in conformable time-fractional WuZhang system arising in coastal design, Pramana,Vol. 93, No. 57, pp.1-10. 25. D. Kumar, J. Singh, D. Baleanu (2018), Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Le er type kernel, Physica A. Vol. 492, pp. 155–167. 26. T-c. Xia, H-q. Zhang, Z.-y. Yan (2001), New explicit and exact travelling wave solutions for a class of nonlinear evolution equations, Appl. Math. Mech. Vol. 22(2021), No.7, pp. 788–793. 27. H Jafari, Hossein, Tajadodi, D. Baleanu, Abdulrahim, A. Al-Zahrani, Y.A. Alhamed, A.H. Zahid (2013), Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation, Central J. Eur. Phys., Vol. 11, No. 10, pp. 1482–1486. 28. M. Eslami, B.F. Vajargah, M. Mirzazadeh, A. Biswas (2014), Application of first integral method to fractional partial differential equations, Indian J. Phys. Vol. 88, No. 2, pp. 177–184. 29. A. Sonmezoglu, Exact solutions for some fractional differential equations, Adv. Math. Phys. 2015. 30. O. Güner, M. Atik (2015), study on the nonlinear fractional generalized reaction duffing model, NTMSCI, Vol. 3, No. 4, pp.125–132. 31. Uddin M., Hafiz M. A., Akbar M. A., Khan M. A. (2017), Haqre Close form solutions of the fractional generalized reaction duffing model and the density dependent fractional diffusion reaction equation, Appl. Comput. Math., Vol. 6, No. 4, pp.177. 32. H. Bulut, H. M. Baskonus (2016), Exponential prototype structures for (2+1)-dimensional BoitiLeon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, Vol. 26, No. 2, pp.189-195. 33. U. Demirbilek, V. Ala, Kh. R. Mamedov, S. Goktas, On the exact solution of fractional Simplified MCH Equation, Sovremennie problemi teoriya funkchii i ix prilojeniya, Saratov, 2020, pp. 150–152. 34. D. Kumar, A. R. Seadawy, A. K. Joardar,(2017),Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology, Chinese Journal of Physics, Vol. 56, No. 2018, pp. 75-85. |

Back to the journal content |