Paper title: |
Bipolar - Valued Q - Fuzzy Hx Subgroup on an Hx Group |
DOI: | https://doi.org/10.4316/JACSM.201701004 |
Published in: | Issue 1, (Vol. 11) / 2017 |
Publishing date: | 2017-04-13 |
Pages: | 20-24 |
Author(s): | MASSA'DEH Mourad Oqla, FORA Ali Ahmad |
Abstract. | In this paper, we define the algebraic structures of a bipolar Q - fuzzy sub HX group and some related properties are investigated. We also define a bipolar Q - fuzzy normalizer and establish the relation with a bipolar Q - fuzzy normal HX - group. Characterization of level subset of a bipolar Q - fuzzy sub HX group of HX group are given |
Keywords: | Bipolar - Valued Fuzzy Set; Bipolar - Valued Q - Fuzzy Set; Bipolar - Valued Q - Fuzzy Sub HX Group; Bipolar - Valued Q - Fuzzy Normal Sub HX Group; Level Sub HX Group; Q - Fuzzy Normalizer |
References: | 1. Arsham Borumand said (2009). Bipolar –Valued Fuzzy BCK/ BCI – Algebras. World Applied Sciences Journal, Vol.7, pp1404 – 1411. 2. A. Rosenfeld (1971). Fuzzy Groups, J. Math . Anal . Appl. Vol. 35, pp 512 – 517. 3. A. Solairaju and R. Nagarajan (2009). A New Structure and Construction Of Q – Fuzzy Groups, Advances In Fuzzy Mathematics. Vol.4, pp 23 – 29. 4. A. Solairaju and R. Nagarajan(2008). Q – Fuzzy Left R – Subgroups of Near Rings w.r.t T - Norm, Antarctica Journal Of Mathematics. Vol. 5pp 59 – 63. 5. J. X. Fang (1994). Fuzzy Homomorphism and Fuzzy Isomorphism, Fuzzy Sets And Systems. Vol. 63,pp 237 – 242. 6. K. H Manikandan and R. Muthuraj(2013). Some Properties Of Induced Fuzzy And Induced Anti Fuzzy Subgroups On A HX Group, International Journal Of Scientific And Innovative Mathematical Research.Vol.1,pp 211 – 224. 7. 7. K. M. Lee., Biploar – Valued Fuzzy Set And Their Operations, Proc. Int.Conf. On Intelligent Technologies. Thailand, 2000, pp 307 – 312. 8. L. A. Zadeh (1965), Fuzzy Sets, Information and Control. Vol.8,pp 338 – 363 9. Li Hongxing., HX Group, Buseful. 33,pp 31 – 37,1987. 10. Luo Cheng Zhong, Mi Honghai and Li Hon Gxing (1989). Fuzzy HX Group, Buseful. Vol. 41 -14, pp 97 – 106. 11. M. O. Massa'deh (2016). On Q – Fuzzy M – HX Groups, International Journal Of Fuzzy Mathematics And Systems. Vol.6, pp 7 – 12. 12. M. S. Anitha, K. L. Muruganantha Prasad and K. Arjunan (2013). Notes On Bipolar- Valued Fuzzy Subgroups OF A Group, Bulletin Of Society For Mathematical Services and Standards.Vol.2, pp 52 – 59. 13. M. S. Anitha, K. L. Muruganantha Prasad and K. Arjunan (2013). Homomorphism And Anti – Homomorphism Of Bipolar – Valued Fuzzy Subgroups Of A group, International Journal Of Mathematical Archive. Vol.4, pp 274 – 276. 14. R. Muthuraj, K. H. Manikandan and P.M. Sithar Selvam (2012). On Anti Q – Fuzzy Normal HX Group, Elixir Dis. Math. Vol.44, pp 7477 – 7479. 15. R. Muthuraj, K. H. Manikandan and P.M. Sithar Selvam (2010). Anti Q – Fuzzy HX Group And its Lower Level, International Journal Of Computer Applications. Vol.6, pp 16 – 20. Samit Kumar Majumder (2012). Bipolar – Valued Fuzzy Set In - Semigroups, Mathematica Aeterna. Vol.2, pp 203 – 213. 16. Y. L. Liu, S. Liu (2004).Fuzzy Isomorphism Theorems Of Groups, Far East J. Appl. Math. Vol.16, pp 77 – 89. 17. Y.L. Liu, J. Meng and X. L. Xin (2001). Quotient Ring Induced Via Fuzzy Ideals, Korean J. Comput. Appl. Math. Vol. 8, pp 631 – 643. |
Back to the journal content |