Paper title: Classification of Classifiers in Supervised Learning Pattern Recognition
Published in: Issue 2, (Vol. 7) / 2013Download
Publishing date: 2013-10-28
Pages: 23-26
Author(s): PENTIUC Ştefan-Gheorghe, PURDILĂ Vasile
Abstract. In the numerical approach of pattern recognition, topological properties of the groups of similar patterns from pattern space play an important role in the correctness of decisions concerning the membership of a pattern to class. This work analyzes comparatively the performance of several types of classifiers and discusses a fuzzy heuristic method for learning a type 3 classifier.
Keywords: Classifiers, Fuzzy, Heuristic, Pattern Recognition
References:1. S. Nedevschi, “Prelucrarea imaginilor si recunoasterea formelor”, Ed. Microinformatica, 1997.
2. Stefan-Gheorghe Pentiuc, Recunoa?terea formelor: metode, programe, aplica?ii, Editura Universită?ii din Suceava, 1996, ISBN973-97787-5-5.
3. St. Gh. Pentiuc (1997), Aplicatii ale recunoasterii formelor in diagnosticul automat, Ed. Tehnica, Bucuresti, ISBN 973-31-1096-5, 155 pag.
4. Hang, GuoYan, DongMei Zhang, Jiadong Ren, and Changzhen Hu. “A Hierarchical Clustering Algorithm Based on K-Means with Constraints.” In 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), 1479–1482, 2009. doi:10.1109/ICICIC.2009.18.
5. Celeux, G.; Diday, E.; Govaert, G.; Lechevalier, Y. and Ralambondrainy, H. (1989). Classification Automatique des Donnees, Dunod, Paris.
6. Haller I., Nedevschi S., “Design of Interpolation Functions for SubPixel Accuracy Stereo-Vision Systems”, IEEE Transactions on Image Processing, vol. 21, no. 2, 2012, pp. 889-898. 7. S. Nedevschi, I. R. Peter, I. A. Dobos, C. Prodan, “An improved PCA type algorithm applied in face recognition”, in Proceedings of 2010 IEEE Intelligent Computer Communication and Processing, ClujNapoca (ICCP 2010), August 26-28, 2010, pp. 259-262. 8. Cheng-Jian Lin, Chi-Yung Lee, and Shang-Jin Hong, An Efficient Fuzzy Classifier Based on Hierarchical Fuzzy Entropy, International Journal of Information Technology Vol.12 No.6 2006. Pp.9-18
9. Janos Abonyi, Ferenc Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Letters 24 (2003) 2195–2207, doi:10.1016/S0167-8655(03)00047-3
10. Serban Radu, Eugenia Kalisz, Adina Magda Florea: A model of automated negotiation based on agents profiles. Scalable Computing: Practice and Experience 14(1) (2013).
11. Irina Mocanu, Adina Magda Florea: A Multi-agent System for Human Activity Recognition in Smart Environments. IDC 2011: 291-301.
12. Stefan Gheorghe Pentiuc, Ioan Ungurean: Multilevel Parallelization of Unsupervised Learning Algorithms in Pattern Recognition on a Roadrunner Architecture. IDC 2011: 71-80. 13. Asuncion, A. and Newman, D.J., UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html.. Irvine, CA: University of California, School of Information and Computer Science, 2007.
Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2019