Paper title:

Lossless Image Compression Based on Mojette Transform and Differential Coding

Published in: Issue 2, (Vol. 5) / 2011
Publishing date: 2011-10-28
Pages: 81-84
Author(s): OUAFI Abd E. , TALEB-AHMED Ahmed A. , ZITOUNI Athmane, BAARIR Zine Eddine
Abstract. The Mojette Transform is a discrete exact and redundant version of the Radon transform. The application of the Mojette transform in image compression is based on the image projections similarity using different directions. The main works in this area is based on the coding called intra- projection and inter-projection. In the latter case, for this article, we propose a new algorithm based on the following two points: (i) a new interpolation approach of Mojette projections different from the linear interpolation currently used (ii) development of a differential coding between the different projections. The results that we obtained were compared with the recent different approaches and are much better for all the test images used.
Keywords: Lossless Compression, Mojette Transform, Differential Coding, Intra-projection Coding, Inter-Projection Coding, Lossless JPEG2000

1. J-P. Guédon, D. Barba, N. Burger. Psychovisual Image coding via an exact discrete Radon Transform, Proc. SPIE VCIP’95, 2501, 562-572. 1995.

2. N. Normand, J-P. Guédon. “La transformée mojette : une représentation redondante pour l’image.” Académie des Sciences, Informatique Théorique, Vol. 325, p123-126, 1997.

3. J-P. Guédon, N. Normand, Spline Mojette Transform, Application on Tomography and communication, EUSIPCO. Sep 2002.

4. J-P Guédon, B. Parrein, N. Normand, Internet Distributed Image Databases, Int. Comp. Aided Eng.Vol. 8, pp. 205-214. 2001

5. F. Autrusseau, B. Parrein, M. Servieres, “Lossless Compression Based on a Discrete and Exact Radon Transform: A Preliminary Study”, IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’06, Toulouse, France (2), pp. 425-428, 2006.

6. A. Kingston, S. Colosimo, P. Campisi, F. Autrusseau, « Lossless Image Compression and Selective Encryption Using a Discrete Radon Transform », IEEE International Conference on Image Processing, ICIP, 2007.

7. N. Normand, Représentation d’images et distances discretes basées sur les éléments structurants a deux pixels, these, Université de Nantes. 1997

8. P. Verbert, J-P Guédon, An exact discrete backprojection operator, EUSIPCO’2002.

9. Katz, M.: Questions of uniqueness and resolution in reconstruction from projections. Springer Verlag, Berlin, 1977.

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2023