Paper title:

Relevance Feedback in Content Based Image Retrieval: A Review

Published in: Issue 1, (Vol. 5) / 2011
Publishing date: 2010-04-29
Pages: 41-47
Author(s): PATIL B. Pushpa , KOKARE B. Manesh
Abstract. This paper provides an overview of the technical achievements in the research area of relevance feedback (RF) in content-based image retrieval (CBIR). Relevance feedback is a powerful technique in CBIR systems, in order to improve the performance of CBIR effectively. It is an open research area to the researcher to reduce the semantic gap between low-level features and high level concepts. The paper covers the current state of art of the research in relevance feedback in CBIR, various relevance feedback techniques and issues in relevance feedback are discussed in detail.
Keywords: Relevance Feedback, Long-term Learning, Short-term Learning, Image Retrieval, Content-based Image Retrieval, Semantics
References:

1. Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang., “Image Retrieval: Ideas, Influences, and Trends of the New Age,” ACMComputing Surveys, Vol. 40, No. 2 article 5, pp.5:1-5:60, Apr.2008.

2. Rui, Y., Huang, T. S., Chang, S. F., “Image Retrieval: Current Techniques, Promising Directions and Open Issues,” J. Visual Comm. and Image Representation, vol.10, pp. 39-62, Jan. 1999

3. Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., Jain R., “Content –based Image Retrieval at the End of the Early Years,” IEEE Trans. Pattern Anal. Machine Intell. 22(12), pp.1349-1380, 2000

4. Kokare, M., Chatterji, B. N., Biswas P. K., “A Survey on Current Content-based Image Retrieval Methods,” IETE J. Res. 48(3&4), pp. 261-271. 2002

5. Rui, Y., Huang, T.S., and Mehrotra,S. “Content-based Image Retrieval with Relevance Feedback in MARS”, in Proc. IEEE Int. Conf. on Image proc., 1997

6. Rui, Y.; Huang, T.; Ortega, M.; Mehrotra,S. “Relevance Feedback : A Power Tool In Interactive Content-Based Image Retrieval,” IEEE Transactions on Circuits and Systems for Video Technology , Vol. 8(5), pp. 644-655, 1998.

7. S. D. MacArthur, C. E. Brodley, and C. R. Shyu, “Relevance Feedback Decision Trees in Content-based Image Retrieval” in Proc. IEEE Work-shop Content-based Access of Image and Video Libraries, pp.68-72, Jun 2000.

8. I. J. Cox, M.L. Miller, T.P. Minka, T.V.Papathomas, and P.N.Yianilos, “The Bayesian Image Retrieval System, PicHunter: Theory, Implementation and Psychophysical Experiments,” IEEE Trans. on Image Processing, Vol.9, Issue 1, pp.20-37, Jan. 2000.

9. Z. Su H. Zhang, S. Li, and S. Ma, “Relevance Feedback in Content-based Image Retrieval: Bayesian framework, Feature Subspaces, and Progressive Learning,” IEEE Trans. Image Process, vol. 12, no. 8 , pp. 924-936, Aug 2003.

10. Tong S. and Chang E., “Support Vector Machines Active Learning for Image Retrieval” in Proc. ACM Multimedia, 2001.

11. K. Tieu and P. Viola, “Boosting image retrieval” in Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 228-235, Jun. 2000.

12. Q. Tian , N. Sebe, M.S. Lew , E. Loupias, and T. S. Huang, “Image Retrieval Using Wavelet-Based Salient Points,” J. Electronic Imaging, special issue on Storage and Retrieval of Digital Media, vol. 10, no.4 pp. 849-935, 2001.

13. J. Wang, H. Zha, and R. Cipolla, “Combining Interest Points and Edges for Content-based Image Retrieval” in Proc. IEEE Int’l Conf. Image Processing (ICIP’ 05), pp. 1256-1259, 2005.

14. Rouhollah Rahmani, Sally A. Goldman, Hui Zhang, Sharath R. Cholleti, and Jason E. Fritts, “Localized Content-Based Image Retrieval,” IEEE Transactions on Pattern analysis and Machine Intelligence, Vol. 30, No. 11, pp. 1902-1912, Nov. 2008.

15. Manesh Kokare, B.N. Chatterji and P.K Biswas, “Comparision of Similarity Metrics for Texture Image Retrieval” in IEEE TENCON, pp. 571-575, 2003.

16. Chang, S F, Chen. W., and H. Sundarm, “Semantic visual template: Linking Visual features to semantics” in proceeding of the IEEE International Conference on Image Processing, pp. 531-535, 1998.

17. Sclaroff, S., La Casicia, M., Sethi, S., and Taycher, L., “Mix and Match Features in the ImageRecover Search Engine” in Principles of Visual Information Retrieval, M.S. Lew, Ed. Springer-Verlag, London, pp. 259-277, 2001.

18. Rui. Y and Huang, T. S, “Relevance Feedback Techniques in Image Retrieval” in Principles of Visual Information Retrieval, M. S. Lew, Ed. Springer-Verlag, London, pp. 219- 258, 2001.

19. Chen, Y. ,Zhou , X.S., and Huang, T.S. ,“One class SVM for Learning in image Retrieval” in proceeding of IEEE International Conference on Image Processing, pp. 815-818, Oct. 2001.

20. Guo, G., Zhang, H.J., and Li, S. Z., “Boosting for ContentBased Audio Classification and Retrieval: An Evaluation”, In Proceedings of the IEEE Conference on Multimedia and Expo, Tokyo, Japan, August 2001.

21. He, X., Ma, W. Y., King , O. Li, M., and Zhang, H., “Learning and Inferring a Semantic Space from User’s Relevance Feedback for Image Retrieval” In proceedings of the ACM Multimedia , pp. 343-347 , 2002, New York.

22. Dy, J.G., Brodley, C.E., Kak, A., Broderick, L.S., and Aisen, A.M., “Unsupervised Feature Selection Applied to ContentBased Retrieval of Lung Images,” IEEE Transactions on pattern Aanalysis and Machine Intelligence, 25(3), pp. 373- 378, 2003

23. Tieu, K.and Viola, P.,“Boosting Image Retrieval”, International Journal of Computer vision, 56(1), pp. 17-36, 2004.

24. Yin, P.Y., Bhanu, B., Chang, K.C., and Dong, A., “Integrating Relevance Feedback Techniques for Image Retrieval using Reinforcement Learning,” IEEE Transactions on Pattern Analysis and Machine Iintelligence, 27(10). pp.1536-1551, 2005.

25. Steven C.H., Hoi, Michael R.Lyu, Rong Jin, “A Unified LogBased Relevance Feedback Scheme for Image Retrieval,” IEEE Transactions on Knowledge and Data Engineering, Vol. 18, No. 4, pp. 509-524, April 2006.

26. Ming Li, Zhi-Yun Liu, Jain-kun Wang, “An Adaptive Relevance Feedback Image Retrieval Method with Based on Passibilistic Clustering Algorithm” in Proceedings of Sixth International Conference Intelligent Systems Deign and Applications, 2006.

27. Zhi-Hua Zhou, Ke-Jia Chen, and Hong-Bin Dai, “Enhanced Relevance Feedback in Image Retrieval Using Unlabeled Data,” ACM Journal, pp. 1-25, 2006.

28. Junwei Han, King N., Mingjing Li, and Hong-Jiang Zhang, “A Memory Learning Framework for Effective Image Retrieval,” IEEE Trans. on Image Processing, vol. 14, no 4, pp. 511-523, April 2005.

29. Marin Ferecatu, Nozha Boujemaa, Michel Crucianu, “Semantic interactive image retrieval combining visual and conceptual content description,”ACM multimedia systems Journal, vol. 13, No. 5-6, pp. 309-322, 2008.

30. Anca Loredana Ion, Liana Stanescu, and Dan Burdescu, “Semantic Based Image Retrieval using Relevance Feedback”, international Conference on Computer as a Tool, pp. 303-310, Warsaw, September 2009.

31. I Gondra, D.R Heisterkamp, and J. Peng, “ Improving the Initial Image Retrieval Set by Inter-query Learning with One Class SVMs” in Proc. of the 3rd International Conference on Intelligent Systems Design and Applications , Tulsa, Oklahoma, United States, 2004

32. Esin Guldogan, Moncef Gabbouj, “Dynamic Feature Weights with Relevance Feedback in Content-Based image Retrieval”, in METU, Northern Cyprus Campus, pp. 56-59. September 2009

33. Rocchio JJ, “Relevance Feedback in Information Retrieval” in the SMART Retrieval system, pp. 313-323, prentice Hall. 1971.

34. G. Ciocca and R. Schettini, “A Relevance Feedback Mechanism for Content-based Image Retrieval” in Inf. Process. Manage. , vol. 35, no. 5, pp. 605-632, 1999.

35. I. J Cox, M. L Miller. “PicHunter: Bayesian Relevance Feedback for Image Retrieval” in Proc. of the 13th International Conference on Pattern Recognition, Vienna, Austria, 1996

36. Michel Crucianu, Marin Ferecatu, and Nozha Boujemua, “Relevance Feedback for image Retrieval: a short survey” In INRIA Recocquent court, B.P 105. Oct. 2004.

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2024